Supplement to “ Rate - Optimal Posterior Contraction for Sparse Pca ”
نویسنده
چکیده
منابع مشابه
Rate-optimal Posterior Contraction for Sparse Pca By
Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low-rank structure of the data. In the highdimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA w...
متن کاملRate-optimal Posterior Contraction for Sparse Pca
Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low rank structure of the data. In the high-dimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA ...
متن کاملA General Framework for Bayes Structured Linear Models
High dimensional statistics deals with the challenge of extracting structured information from complex model settings. Compared with the growing number of frequentist methodologies, there are rather few theoretically optimal Bayes methods that can deal with very general high dimensional models. In contrast, Bayes methods have been extensively studied in various nonparametric settings and rate o...
متن کاملTighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time
We provide statistical and computational analysis of sparse Principal Component Analysis (PCA) in high dimensions. The sparse PCA problem is highly nonconvex in nature. Consequently, though its global solution attains the optimal statistical rate of convergence, such solution is computationally intractable to obtain. Meanwhile, although its convex relaxations are tractable to compute, they yiel...
متن کامل